EAL, Institut für elektrische Antriebe und Leistungselektronik

Institut für elektrische Antriebe und Leistungselektronik

JKU, Johannes Kepler Universität Linz

Sprache: DE

Publikations Einzelansicht

Active Reduction of Bearing Forces for Short Stroke Linear Actuators


Autor(en): Florian Poltschak
Journal: ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014
Jahr: 2014
Monat: August
Seite(n): 6 (401-406)
Datei / URL: http://www.magneticbearings.org/
Zusammenfassung: Linear magnetic actuators are used in industry for a wide area of applications. In order to reach high values for the axial thrust force, the mover commonly features a permanent magnet excitation. Thus, in combination with a slotted stator layout, these actuators exhibit a high destabilizing stiffness in the direction perpendicular to the direction of motion which has to be compensated by the linear bearings. This paper introduces a linear short stroke actuator with an integrated active bearing force compensation to minimize the forces acting on the mechanical bearings. The potential and limits of a bearing force compensation is analyzed based on a short stroke linear actuators with an E-shaped stator layout. It is outlined how far bearing forces can be compensated even for simple actuator layouts. Especially for linear drives oscillating with a high speed this compensation can significantly reduce wear and thus improve lifetime and efficiency as well as reduce the size of the mechanical bearings.

« zurück